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"Problems” with audio-based machine learning:
- Most ML research is not about audio

- Audio classification is difficult



Why is audio classification difficult?
- Information contained in audio is abstract

- Audio essentially has no “meaning’



How to capture "meaning” and information from audio?
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Time domain - Frequency domain:

- Fourier Transform (FT). decomposition of a signal
into its basic frequencies

- Discrete Fourier Transform (DFT): Fourier
Transform for discrete signals

- Result is a periodogram



Time domain - Frequency domain:

/ frequency



Feature extraction:;

- Transforming original audio data into a more
suitable form for machine learning

- Using DFT and other techniques to extract
relevant information from audio

- Mel-frequency cepstral coefficients (MFCCs).
state-of-the-art for audio



Raw audio — useful features (MFCCs):
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Perform Fourier Transform on prepared audio

Non-linearity of human hearing
Discrete Cosine Transform
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STFT:
- Produces a spectrogram

- Gives information about how frequencies change
through time for each 100 ms block of audio



Raw audio — useful features (MFCCs):
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Hearing Experiment:
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Conclusion:;

- Humans are bad at perceiving high frequencies



Solution:;

- Mel scale: rescales the audio to mimic non-linear
human perception of sound

- More discriminative at lower frequencies and less
discriminative at higher frequencies
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Raw audio — useful features (MFCCs):
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DCT:
- Final step in feature extraction
- Better fits the shape of the resulting spectrum

- Keeps only lower-order coefficients because
higher-order coefficients contain noise
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Results and observations:
- Validation accuracy 97.46%

- Theoretical inference is different from practical



Conclusion:;

- Audio classification is an interesting area of
research with plenty of potential

- Music is one of the more interesting applications,
but this can be used for any type of audio



Thank you. Questions?



