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“Problems” with audio-based machine learning:

- Most ML research is not about audio

- Audio classification is difficult



Why is audio classification difficult?

- Information contained in audio is abstract

- Audio essentially has no “meaning”



How to capture “meaning” and information from audio?







Time domain ⇾ Frequency domain:

- Fourier Transform (FT): decomposition of a signal 
into its basic frequencies

- Discrete Fourier Transform (DFT): Fourier 
Transform for discrete signals

- Result is a periodogram



Time domain ⇾ Frequency domain:



Feature extraction:

- Transforming original audio data into a more 
suitable form for machine learning

- Using DFT and other techniques to extract 
relevant information from audio

- Mel-frequency cepstral coefficients (MFCCs): 
state-of-the-art for audio



Raw audio ⇾ useful features (MFCCs):

1. Prepare raw audio
2. Perform Fourier Transform on prepared audio
3. Non-linearity of human hearing
4. Discrete Cosine Transform
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STFT:

- Produces a spectrogram

- Gives information about how frequencies change 
through time for each 100 ms block of audio
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Hearing Experiment:
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Conclusion:

- Humans are bad at perceiving high frequencies



Solution:

- Mel scale: rescales the audio to mimic non-linear 
human perception of sound

- More discriminative at lower frequencies and less 
discriminative at higher frequencies
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DCT:

- Better fits the shape of the resulting spectrum

- Final step in feature extraction

- Keeps only lower-order coefficients because 
higher-order coefficients contain noise
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Results and observations:

- Validation accuracy 97.46%

- Theoretical inference is different from practical



Conclusion:

- Audio classification is an interesting area of 
research with plenty of potential

- Music is one of the more interesting applications, 
but this can be used for any type of audio



Thank you. Questions?


